Novel properties generated by interacting computational systems: A minimal model
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1 Introduction

In this work we address two questions: First, what is the smallest number of components a
computational system needs in order to display genuine novelty? And second, can the novel
features of such systems also exhibit novel causal powers?

The possibility of generating novelty via computational processes has been an ongoing topic
of investigation and debate in Artificial Intelligence research for several decades. More
recently, topics such as self-organisation and emergence have been discussed in
computational terms within Complex System Science. Researchers in complexity have
worked to understand the possibility of genuine novelty in computational systems in order
to understand the significance of computational models of putatively emergent properties.1

Since ‘novelty’ and ‘causation’ carry different meaning in different scientific contexts, it is
important to specify which definitions we use in this work. In this context, a system can be
thought to generate genuine novelty given the appearance of processes or behaviours not
explicitly coded in the generating algorithm (1). We roughly follow the spirit of the definition
of emergence in computational models given by Stephanie Forrest and others. However we
do not wish to rest a definition of novelty on the explicit intentions of the authors of the
code. Instead, given an automaton, we define novel structures as those which cannot arise
solely from the code which determines the properties of the automaton. By ‘causality’, we
mean the possibility of intervention or control in terms of idealised agency (2-4). Our view
of causation is explained in more detail in Section 3. Both definitions provide constraints
which we believe set an appropriately high bar for discussions of novel properties in
computational systems. In our view, if more relaxed accounts of causation and novelty were
adopted, many of the more ambitious goals implicit in the scientific study of complexity
would become trivial.

! Putatively emergent properties such as the flocking behavior of birds, (Reynolds 1988) the
adaptive features of the immune systems, (Hofmeyer et al 2000) and the characteristic
patterns of traffic flow (Schreckenberg 1995) have been given computational models.



One underlying problem in both Artificial Intelligence and in Complex Systems Science
involves determining whether novel features of systems are, in fact, endowed with causal
power independent of the causal powers of their components. Interest, in novel causal
agency is evident, for example, in the desire among computer scientists to develop agents
which exhibit genuinely autonomous interaction with a changing environment. In a
somewhat different context, researchers in complexity science hope to provide models
allowing us to study the causal characteristics of emergent properties in complex systems.
Emergent properties of complex systems are interesting precisely insofar as they are not
merely epiphenomenal, but instead result in some genuinely new agency in the system
under consideration.

In a number of papers, we (along with co-authors) have stressed that within computational
systems genuinely novel causal powers, as described above, cannot occur. Our argument is
based on the acknowledgment that traditional (non-interactive) computational systems are
closed systems, whose dynamics is fully predetermined by the initial conditions and a fixed
set of rules; we refer the reader to our previous work for more details (5, 6). According to
this view, emergent patterns arising from computational systems may appear novel to an
observer with incomplete knowledge of the system or to an agent who does not possess
logical omniscience. By contrast, patterns resulting from non-interacting computational
processes would be logically deducible, and thus not genuinely novel, given full knowledge
of the system’s code (and logical omniscience). Thus, while weakly emergent features of
computational models of the kind discussed by Mark Bedau and others (7, 8) are objective
features of those systems, they would not count as genuinely new on our view. (See (9) for
further discussion) Following a similar argument, on our view, patterns arising from non-
interacting computational systems do not possess unique causal powers independent of
their components, since whatever causal agency the system exhibits is restricted to the rules
written in the algorithm. (10, 11) Emergent patterns can convey information to an agent
who is not logically omniscient and who does not have complete knowledge of the rules of
the system, but they carry no novel information which has relevant consequences within the
processes in operation within the system (10).

The idea that the generation of genuine novelty and independent causal processes require a
system to be open (and thus interaction with at least one external system) has been
discussed within different contexts (12-15). In the existing literature, notions of interaction
and openness tend to be imprecise. As a step towards clarifying these concepts, we aim to
develop a system of minimal size and complexity capable of generating novel patterns.
Here, the patterns we consider are strings of symbols. The system we propose requires three
components: a) two initial automata, b) interaction and c) the ability of at least one
automaton to process strings not predefined in its alphabet. For our purposes here, the
latter would permit the capacity to engage in genuine interaction. Of course, there are a
variety of ways that systems could interact and we call this general feature, interaction
openness. In accounting for the interactive character of a system it is important to
understand the nature of a system’s interaction openness.

Because of the close relation between the generation of novelty and the occurrence of
genuine causation (10, 11), we also aim to discuss whether this basic system allows for the
appearance of patterns with novel causal powers. We suggest that even in such simple



system, the judgement of whether genuinely novel structures and genuine causation occurs
depends crucially on the problem of determining system boundaries.

The problem of how one individuates systems poses a profound challenge for metaphysics
and is beyond the scope of the present paper. While we do not rule out the possibility that
ontologists may provide a strategy for individuating systems in non-arbitrary way, judgments

with respect to causal power in the contexts we discuss here will obviously be relative to the
determination of those boundaries. (See (16))

2 The system

2.1 The automata

Let’s define two automata as follows:

e Machine A: Alphabet=[0, 1]; Initial state =[0 0]; Transition rules=[00—>1, 01->1,
1050, 11->0]

e Machine B: Alphabet=[0, 1]; Initial state =[0 0]; Transition rules=[00->1, 010,
10->1, 11->0]

Each automaton generates periodic strings according to the defined transitions. In particular,

Machine A | 001100110011001100110011...

Machine B | 001001001001001001001001....

We can use the CSSR algorithm (17) to reconstruct the e-machine from the output strings
and to estimate the statistical complexity and the entropy rate of the strings. Since both
machines generate periodic output their entropy rate is zero. The statistical complexity is 2
and 1.58 for Machine A and B, respectively, since Machine A has a period 4 and Machine B
has period 3 (see Appendix for a brief description of the CSSR algorithm).

Let’s now suppose that an external observer sees the combined output of the two machines.
For example, the observer may not be able to discern that a system is made up of the two
machines, but may see the output of pair of symbols [[0 0], [0 0], [1 1], [1 0], ... ], which is
obtained by combining the symbols emitted at the same time. The outcome is another
periodic time series with period 12 and consequently of zero entropy rate and a statistical
complexity of 3.58.

Notice that so far the machines are not interacting, their output is simply combined, and
appears more complex to an external observer.



2.2 Interaction

Now we include in the system an Interactive Identity Machine (IIM) as defined in (13); this
performs a ‘unit of interaction’ by taking an input and emitting it unaltered as output.

The IIM enables Machine A and Machine B to interact. In particular, the 1IM takes a symbol
from Machine B and copies it unaltered at a certain location of Machine A’s tape.

Machine A | 00110011001100110010..

/

Machine B | 00100100100100100..

After the interaction has occurred, Machine A proceeds in the computation by following its
transition table:

Machine A | 00110011001100110010011..

As a result of the interaction, Machine A has performed a transition [01-0] which was not
specified in the original transition rules, and consequently the output contains a word [010]
which was not present in the tape before the interaction. To an external observer the state
‘01’ now appears to have a non determinist transition rule, since it has been observed
transiting to either ‘1’ or ‘0’. As a result, both the statistical complexity and the entropy rate
of the machine increase; the exact size of the increase depends on how often the interaction
occurs and is not relevant to our discussion.

We now define Machine C as:

e Machine C: Alphabet=[22, 23, 32, 33]; Initial state=[22]; Transition rules=[22-3,
23-2,32->2,33-52]

Machine C is equivalent to Machine B, with the symbols 2 and 3 replacing 0 and 1,
respectively. As a result, Machine C has a statistical complexity equal to 1.58 and zero

entropy rate.

Then, we apply an IIM to the Machine A and Machine C:

Machine A | 001100110011001100113

/

Machine C 223223223223223223/. . ‘

Unlike before, now Machine A is not able to proceed since the word ‘13’ is not in its
alphabet and no transition rule is available to process it. As a result Machine A halts.



Finally, we introduce Machine D, by modifying Machine A as follows

e Machine D: Initial state=[0011]; Transition rules=[go back 4 steps along the tape;
copy the next 3 symbols; go forward 4 steps along the tape and paste the 3 symbols]

Machine D | 001100110011001100110011.....

Machine D generates the same output as Machine A, which results in a statistical complexity
equal to 2 and zero entropy rate.

We now apply an IIM to Machine D and Machine C.

Machine D | 0011001100110011001103

/

Machine C | 223223223223223223...

Despite the word ‘03’ not appearing in Machine D’s alphabet, Machine D is able to process it
by simply copying and pasting the values along the tape. This is because its transition rule is
a function of the tape position not of the machine’s initial alphabet:

Machine D | 001100110100110011031103110311031103 ...

In its processing, now Machine D also generates the word ‘31’. Notice that the words ‘03’
and ‘31’ are new not only to Machine D, but also to Machine C and consequently also to the
larger system Machine D U Machine C.

An observer studying the output of Machine D would now see an entropy rate larger than O,
as for Machine A after it interacted with Machine B. This is due to the uncertainty generated
by the sudden appearance of symbol 3 and the resulting unexpected transition. Also the
observer will see 8 states, with a statistical complexity close to 3 (the exact value depends on
when the interaction happens and is not relevant to our discussion).

Finally, an observer external to the system Machine D U Machine C, analysing the combined
output of the two machines [[0 2], [0 2], [1 3], [1 2], ... ], would see a time series with 24
states (12 before the interaction and 12 afterwards) and an entropy rate larger than zero. To
this observer this combined output appears the most complex among the ones described so
far.

3 Causation

In this work, we adopt an interventionist view of causation, according to which causation
implies control in terms of an idealised agency which can produce an effect by altering the
course of a process (3, 18). As Menzies and Price put it: “an event A is a cause of a distinct



event B just in case bringing about the occurrence of A would be an effective means by
which a free agent could bring about the occurrence of B.” (19)

Hausman (2) defines causal control as a relation between processes. This allows us to think
of causation in term of intervention, free from any anthropocentric interpretations. This is
achieved by replacing the intuitive idea of human intervention with the abstract concept of
an idealised agent able to carry out an intervention. To clarify, imagine the relation between
a) a human actor A, b) a cause C the human actor can manipulate and c) the resulting effect
E; in all situations in which the relation between processes P1, P2 and P3 is analogous to the
relation between A, C and E, we call P1 a generalised agent and we call intervention the
action of P1 on P2 (2, 19) and we call effect the (potential) impact on P3. As a result, neither
intervention nor agency implies human intervention, while they nonetheless satisfy the
anthropocentric need for explanation.

Within the dynamical evolution of a system, it is important to stress the difference between
the transitions carried out by a computational process on the one hand and the
interventionist view of causation on the other. What differs is the relation between the
states of the computational process (purely sequential and logically inevitable) and the
idealised processes P1, P2 and P3 mentioned above (inherently parallel and dependent on
the nature of the intervention).

This difference becomes important when we ask where the experimenter should intervene
in order to change the behavior of a process. In a closed, computational process the
dynamics can be inferred from the initial conditions and transition rules. Consequently the
only way to interfere with the system’s behavior (to intervene in the system) is to modify
either the input or the algorithm. Obviously, this would apply to the individual machines in
isolation discussed above. When two machines interact, the experiment can also intervene
by affecting the machine interaction itself. In Section 2.2 we have seen that the interaction
(and thus the relation) between Machine C and D allows for the generation of novel
structures. In the following section we discuss whether the relation which generates these
novel patterns also permits novel causal powers to arise.

4 System boundaries

In the previous section we have seen that novel strings can be generated by allowing an
automaton (Machine D) to interact with an outside process (Machine C and IIM) and by
defining its transition rule in term of memory positions rather than a predefined alphabet.
Nevertheless, if both the automaton and the outside process (Machines D and Machine C
and IIM) are coded in the same program, the entire system would be closed and, by applying
the same reasoning discussed in the Introduction, we would need to claim that genuine
novelty cannot be generated by the system.

This problem reduces to defining the system boundary, an issue regularly encountered in
CSS. Let’s assume an observer can detect only the string output by Machine D. With the help
of Figure 1, we can distinguish 4 cases:



1) Machine D is the ‘system’ and everything else constitutes its environment; this leads
to a number of observations. First, the words ‘03’ and ‘31’ are novel to the system.
Second, an external observer notices an abrupt change in system behaviour after the
interaction occurs. This occurrence is defined by the novel transition ‘10’=>’3’. What
follows this transition appears to be a novel behaviour characterised both by new
words and new transitions. For example, by applying a machine reconstruction
algorithm like the CSSR, what happens before the interaction would appear as a
transient process and the word '01’ as a transient state. Whether such transient is a
feature internal to Machine D dynamics or external to it is something we would not
be able to discern without extra information. Elsewhere (16) we have argued that the
possibility of transients simply cannot be excluded apriori. This provides a basic
challenge to judgments concerning system boundaries in contexts where the
boundaries cannot be stipulated by fiat. Obviously, an algorithm can be stipulated by
fiat and the boundaries of the system behaviour are a direct consequence of that
stipulation. However, such stipulated boundaries have a highly idealized status
requiring all contextual and environmental factors to be bracketed. By contrast, in
natural science and in the modelling of complex systems, responsiveness to empirical
considerations is directly relevant.

2) Machine D U Machine C are the ‘system’ and the IIM is external to it. The words 03’
and ‘31’ are still novel to the system, since they would not be generated without the
IIM. Before the interaction occurs, to an observer the behaviour of the system
appears similar to the one including only Machine D, since Machine C does not
interfere with Machine D dynamics. All considerations, including the possible cause
of the behaviour change, would be as above.

3) Machine D U Machine C U 1IM constitutes the system. This brings about the crucial
question of what triggers the [IM action. If the trigger rule is not coded in either
machines, then IIM must respond to an external trigger; this external trigger then
represents the idealised agent discussed in Section 2.2 and, within the interventionist
view, constitutes the ‘cause’ of the change in system behaviour.

4) Machine D U Machine C U IIM constitutes the system and the trigger for the IIM
action is coded within Machine C. This reduces the overall system to a closed system
(a self containing algorithm) in which, by definition, no causation can arise.

Maclhune D
ﬂ‘ OOL1O0LIOIOCTIOOLLIO31103110311031103
T l..
> TIM
I.
Machine C |

I737733773273723073

Figure 1. Relation between the two Machines, the IIM and the trigger to the interaction.



5 Interaction Openness

While the role of interaction and system boundaries is often discussed in the literature, to
our knowledge less attention has been given to the importance of what we characterized
above as interaction openness. In our previous discussion, an essential requirement for the
generation of novel strings is Machine D’s ability to process symbols in terms of tape
position, not of transition rules; this feature allows Machine D to process a large set of
incoming symbols, without any need for such symbols to be pre-defined. Loosely speaking,
Machines A, B and C are similar to traditional engineering systems, designed to interact with
a predetermined class of processes, while Machine D is akin to a more ‘natural’ system, able
to interact with a larger class of processes thereby, allegedly, generating genuine novelty.

It is important to notice that this flexibility comes at a cost to the observer. While it is in
principle possible for an observer to determine the ‘natural’ behaviour of Machines A, B and
C, it may not be possible to do so for Machine D. It is so for two related reasons. First, after
Machine D interacts with Machine C, a number of transient states become inaccessible; as
will be discussed in detail in (16). The possibility of transients ensures that any state or
system could be the result of a process of emergence via interaction. Second, because a
system’s behaviour is determined, at least partly, by the type of interaction it undergoes and
the nature of the interacting process, the full range of possible system behaviours may itself
not be closed, and consequently it may not be possible to fully determine. Notice that this is
at odds not only with current practise of computational experimentation in CSS (in which
agents’ behaviour is usually fully predetermined) but also with the assumption that the
behaviour of the basic constituents of Nature is known and what needs to be explained are
emergent properties only (11). An extreme example of this type of system is provided by the
[IM whose definition is meaningful only within the context of an interaction.

In Section 4 we have seen that when the system boundaries are such as to enclose all
processes, neither novelty nor genuine causation can arise. As mentioned above, such
conditions are highly idealized and make little sense apart from the realm of mathematical
abstraction. It is useful to ask what happens at the opposite extreme, that is, when the
system boundaries include only one element. Our discussion is based on 3 types of
systems/processes: machines, IIM and trigger of interaction. From an emergentist
perspective there is a marked difference between them: a machine, as employed in this
work, already involves a number of lower level processes able, for example, to provide for
interaction between a computational process and a tape, as well as for the storage and
implementation of a number of instructions. Each of these processes is comparable to the
IIM. At this level, according to our discussion, not only interaction is the determinant for
behaviour, but also behaviour itself does not have a meaning outside interaction. At this
level, everything is obviously emergent. However, in order to be so, the behaviour of each
element cannot be predetermined by the specification of the element itself; some sort of
flexibility on what type of symbol each element can process (or respond to) must be
available in order for complex process to arise at all. This observation suggests that
properties equivalent interaction openness must be available to most basic elements for
interesting novelty to emerge in Nature at all. This suggests the picture of a continuum
ranging from a world in which no genuine novelty can arise (when system boundaries
include all systems) to a world in which all processes are emergent and causal (when



everything but one element is external to the system) and in which the transition from one
extreme to the other is determined by the level of interaction openness. We plan to follow
this direction in our future research.

6 Conclusions

Interaction is clearly a path to novelty. However, understanding the significance of this
novelty involves attention to the way we individuate the components of the interaction.
Discussions of novelty and emergence in CSS and Computer Science often take place in a
way which obscures the central problem of defining the boundaries of the systems under
consideration. We have shown, in a simple form, how the conceptual features of the
problem of interaction can be characterized in a straightforward and non-question-begging
way. Our initial characterization of interaction openness for systems is intended to focus
future studies of interaction on specifiable features of systems which allow the possibility of
interaction and emergence. What remains is for philosophers and scientists to shed more
light on the problem of the individuation of systems. In the meantime, it is clear that our
commitments with respect to system boundaries will determine our commitments with
respect to the nature of interaction and the possibility of genuinely novel causal powers for
emergent properties.

Acknowledgments: John Symons’ work on this paper was supported by the John Templeton
Foundation’s individual research grants program.

Appendix: Statistical Complexity and the CSSR algorithm

In the information theory literature the concept of complexity is closely related to
predictability and in particular to the amount of information required (difficulty) to achieve
optimal prediction. This idea is captured by Kolmogorov’s algorithmic complexity, according
to which a fully random time series has maximum complexity.

In the Complex System Science tradition complexity is usually seen as something in between
order and randomness. This alternative view is captured by Crutchfield and Young (20)
statistical complexity, defined as the amount of information needed to perform a useful
prediction, which is understood as a prediction which captures the statistical properties of a
process/data.

The approach is summarized as follows:

1) take the output of a process as a symbolized time series;

2) use a machine learning algorithm to reconstruct the causal states of the process and
their transitions;

3) define the complexity of the process as the entropy of the causal states; this
measures the uncertainty in predicting the next state of the system, given the
information on its past behaviour and can be seen as a measure of the amount of
memory in the system (in bits) which does a useful job in prediction.



A suitable machine learning algorithm to carry out step 2 above is the CSSR (Causal State
Splitting Reconstruction) (17), which works as follows:

We take a discrete sequence of N measurements of the process we want to analyse,
S;,i=1..N. At any time i, we can divide the series S into two ‘half’-series, S and §, where

S...S.

§=..Si728i718irepresents the ‘past’ and S = S,.15i,25;.5..- represents the ‘future’. Following

the same notation as in (17), we call S* and S‘histories of length L symbols in the past and
in the future, respectively. Also, we call s (and s") specific instances of histories belonging to
S. Now, let’s suppose we scan the series S, looking for occurrences of the history § , and we

store the symbol S* seen as ‘future’ in each instance. We can calculate P(§1|§) , that is, the

probabilities of occurrence of any of the k symbols in the alphabet A, given the history s, and
we call the vector containing these probabilities the morph of § . We can then define a

causal state as the collection of all histories § with the same morph (i.e., histories which

share the same probabilistic future). More formally, histories 5 and S, belong to the same
causal state if P(S'[5,) =P(S'[5,).

Given the above definition, the purpose of the CSSR algorithm is to reconstruct the set of the
causal states of the process and the transition probabilities between the causal states.
Following the nomenclature used in (17), the combination of causal states and their
transition probabilities is called a e-machine.

The CSSR algorithm can be divided into a number of steps:

1) we start from the null hypothesis that the process is independent and identically
distributed. In this case each of the k symbols a e A is equally likely at each time
step and only one causal state is necessary to model the process: the morph of the
state is the k-length vector of components 1/k.

2) we select a maximum history length max_L for our analysis. This is the length of the
longest history with which we scan the series S. For histories of length = 1... max_L,
we scan the series S, storing both the histories found and their futures. Given an

history S , its morph is trivially obtained by caIcuIating_P(a‘§):V(a,§)/v(§), for
each ae€ A, where v(5) is the number of occurrences of the history § and v(a,3) is
the number of occurrences of the symbol a given the history § .

3) We group histories with similar morphs into the same causal states. This involves
three steps: a) first, we need a measure for morph similarity. Real time series are
characterised by both the presence of noise and by finite data extent. Consequently

we need to relax the requirement of exactly matching morphs P(§l|§1) = P(§l|§2) to
an approximation P(S'5,) ~ P(S'[$,) . In particular we accept ‘P(§1|§l)— P(§1|§2)‘ <g

, Where ¢ is a user defined parameter; b) Second, we define the morph for a state as
the average of the morph of all histories in that state; c) finally, in order to ensure the
reconstruction of a minimum number of states, new states are created only when a



history is found which can not match any existent causal state. That is, for each
history, we look for an existent state with similar morph and we create a new state
only when we can not find any. After these steps, we have a collection of states,
grouping all histories found in the time series S according to the similarity between
their morphs.

4) As a last step, we want to make sure that transitions between states, on a given
symbol, are unique. That is, we want to make sure that, given any history in a state,
and a next symbol a € A, the next state is uniquely determined. Notice the difference
between the occurrence of the next symbol, which is stochastic and measured by the
morph, and the transition to the next state, given a next symbol, which we want to
be deterministic. In order to do this, for each state, we store the next state
transitions for each history, that is, we store into what state a history goes after
seeing a certain symbol. This is also represented by a vector of length k, containing,
as elements, the next state on each symbol. If a state has two histories whose next
state transition vectors are different, we split the state and create a new one.

Once the g-machine is reconstructed, its entropy is the statistical complexity of the process
as proposed by Crutchfield and Young (20).
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